Category: Match Statistics

Rugby Science Update 6

The role of player mass and contact speed on head kinematics and neck dynamics in rugby union tackling

This study aimed to use multi- body modeling simulations to examine how tackler and ball carrier mass and contact speed affect inertial head kinematics and neck dynamics. Simulations were run by independently varying the ball carrier and tackler mass (from 60 to 110kg) and speed (from 0 to 10 m/s). Peak resultant inertial neck dynamics (force and moment) and head kinematics (linear acceleration, angular acceleration, and angular velocity) were extracted from each simulation. The study found that the greatest inertial head kinematics and neck dynamics were sustained by a lighter player during a tackle with a heavier player, irrespective of their role as a tackler or ball carrier. For contact speed, the greatest inertial head kinematics and neck dynamics sustained by the ball carrier and tackler were when they were both traveling at the highest speed.

This study was published in the Scandinavian Journal of Medicine & Science in Sports

Tierney, G. J., & Tucker, R. (2022). The role of player mass and contact speed on head kinematics and neck dynamics in rugby union tackling. Scandinavian Journal of Medicine & Science in Sports, 32(2), 298-312.

Tackle technique and changes in Playerload™ during a simulated tackle: an exploratory study

The aim of this study was to explore how PlayerLoad™ changes between different levels of tackling technique during a simulated tackle. PlayerLoad™ did not significantly differ between technical score categories at the point of contact. However, during the tackle completion phase, tackles within the high technical scoring category recorded a higher PlayerLoadTM than low and medium technical scoring tackles. The PlayerLoad™ trace of tackles within the high technical scoring category were also more consistent throughout the tackle. The variability in the PlayerLoad™ trace may be the consequence of players not shortening their steps before contact, reducing their ability to control their movement during the contact and post-contact phase of the tackle. Using the PlayerLoad™ trace in conjunction with technique assessments offers coaches and practitioners insight into the physical-technical relationship of each tackle to optimise tackle skill training, monitoring and match preparation.

This study was published in the Journal of Sports Science and Medicine and free to download. 

Paul, L., Davidow, D., James, G., Ross, T., Lambert, M., Burger, N., … & Hendricks, S. (2022). Tackle Technique and Changes in Playerload™ During a Simulated Tackle: An Exploratory Study. Journal of Sports Science and Medicine, 21(3), 383-393.  

Three-dimensional mechanics of the rugby tackle, does the ball carrier alter their movement into contact in response to the tackler’s position?

The aim of this exploratory study was to identify if, when, and how, the ball carrier modified their motion when being tackled, in response to specific tackle instructions given to the tackler. The ball carrier was observed to modify their behaviour in response to anticipated changes in the tackler’s motion. Specifically, the ball carrier positioned their body at contact using one of two movement strategies: (1) increasing their stability via flexing their trunk, knee, and hips more when entering mid or high trunk tackles; or (2) offload the ball or perform an evasive movement strategy by positioning themselves in a more upright body position when being tackled at a low trunk tackle height. These findings, together with knowledge of tackle injury-risk factors, could inform future coaching interventions for the ball carrier to optimise their performance and mitigate injury risk during the tackle.

This study was published in the International Journal of Sports Science and Coaching and is free to access. 

Edwards, S., Tahu, T., Buchanan, M., Tucker, R., Fuller, G., & Gardner, A. J. (2022). Three-dimensional mechanics of the rugby tackle, does the ball carrier alter their movement into contact in response to the tackler’s position?. International Journal of Sports Science & Coaching, 17(2), 298-308.

Rugby Science Update 1

The impact of matches and travel on rugby players’ sleep, wellness and training

The purpose of this study was to determine the influence of trans-meridian travel and matches on the sleep, wellness, and training of players from four Super Rugby teams during the 2017 Super Rugby season. Travel was associated with substantial sleep deprivation for three of the teams when overseas, which can be explained by travel fatigue, jet lag and a disruption of the normal sleep habit (sleeping in a non-familiar environment and sharing room with a team-mate). The findings of this research suggest that players in four Super Rugby players suffer reduced wellness and an overall sleep deficit when they travel overseas. As trans-meridian travel appears to affect players’ sleep, teams should implement strategies such as melatonin supplementation and light exposure to reduce the effect of jet lag. A correct sleep hygiene could also help players in catching up with the sleep loss they may experience throughout the season and following travel. As there was some evidence of substantial individual responses, teams should carefully monitor the sleep of their players with particular attention to those who sleep more than average, as they may suffer more sleep disruption.

Lo, M., Aughey, R. J., Hopkins, W. G., Gill, N., & Stewart, A. M. (2022). The impact of matches and travel on rugby players’ sleep, wellness and training. PloS one, 17(2), e0261517.

Training load, injury burden, and team success in professional rugby union: risk versus reward

The purpose of this study was to establish whether associations among training load, injury burden, and performance exist within rugby. The study found injury burden was negatively associated with performance, whereas training load measures displayed only trivial associations with performance.

West, S. W., Williams, S., Kemp, S., Eager, R., Cross, M. J., & Stokes, K. A. (2020). Training load, injury burden, and team success in professional rugby union: Risk versus reward. Journal of athletic training, 55(9), 960-966.

Physical characteristics of different professional rugby union competition levels

The purpose of this study was to evaluate whether differences in physical characteristics (running-related and collision-related) derived from microsensor technology exist between four different professional rugby union competition levels. The study found collisions per minute, Collision Load™ per minute and High Metabolic Load Efforts per minute were all higher during International Rugby and European Rugby Champions Cup match-play, when compared to PRO14 and British and Irish Cup match-play. Distance per minute and High-Speed Running distance per minute were lower during International Rugby and European Rugby Champions Cup match-play, when compared with PRO14 and British and Irish Cup match-play. Our data suggest that rugby union players require specific physical preparation for different levels of competition. In particular, players may need specific preparation for higher collision demands at higher levels of competition.

Tierney, P., Blake, C., & Delahunt, E. (2021). Physical characteristics of different professional rugby union competition levels. Journal of Science and Medicine in Sport, 24(12), 1267-1271.